
 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 63

Implementation of Hand Gesture
Recognition as Smart Home Devices
Controller

Stanley A. Dewangga1, Mochamad Subianto1, and Windra Swastika1
1Informatics Department, Faculty of Technology and Design, Ma Chung University, Malang, Indonesia

Corresponding author: Stanley A. Dewangga (e-mail: stanleyadidewangga@gmail.com).

ABSTRACT Some current virtual assistant products such as Alexa, Siri and Google Home facilitate features
to control smart home devices through voice input, which has become increasingly popular in recent years.
In addition to voice input, smart home devices can also be monitored and controlled through smartphones or
computers using applications that provide users with flexibility. However, both control systems are less
efficient, as they consume time and voice input utilization may sometimes not be recognized in crowded
conditions. Therefore, this research introduces an application to recognize real-time hand gestures and utilize
them for a new control system that provides time and energy efficiency. This application processes images
using the Mediapipe framework, generating hand landmark outputs. These landmark outputs are utilized to
determine the combination of raised or lowered fingers, which is then used to control smart home devices.
The application is developed with ESP32 and ESP01s modules as data receivers from gesture recognition,
and ESP32-CAM for image acquisition. Meanwhile, the gesture recognition computation process is executed
on a Raspberry Pi 3 Model B. The gesture recognition application achieves good accuracy at 88%, but may
experience occasional failures for certain gestures. However, the response time generated by the smart home
control system is still relatively long, averaging 7.88 seconds.

KEYWORDS Hand Gesture Recognition, Hand Landmark, Mediapipe, Smart Home

I. INTRODUCTION
This Smart home is a system designed to control and

automate household electronic devices intelligently using
integrated sensors. There are numerous benefits offered by
smart home devices in providing solutions for both routine
and specific human needs. Research on the control system of
smart home devices for individuals with physical disabilities
[1], [2] states that smart home technology facilitates physical
disabilities in managing their household devices.

Control over smart home devices can be achieved through
the use of current virtual assistant products [3], [4]. However,
according to Mtshali & Khubisa (2019) controlling smart
home devices using virtual assistants is a complex,
complicated, and expensive solution for individuals with
physical disabilities or the elderly. These virtual assistants
are also vulnerable to spoofing attacks [5]. In a study on the
design of a smart home as an IoT application based on Voice
Recognition and Arduino [6], failures were also found in
recognizing voice input instructions as controllers for smart
home devices. Voice recognition failures can be time-
consuming, making it less efficient.

In noisy environmental conditions, various noises can
interfere the voice recognition capabilities of virtual
assistants. These noises typically originate from sounds not
intended to control smart home devices. This issue can
hinder the smooth operation of control systems and also
result in time consuming.

Research on hand gesture recognition to control household
electronic devices was conducted [7]. The research design
utilized IMU sensors to obtain accelerometer data, which
was processed and classified into 4 hand gestures: up, down,
left, and right. The results of gesture recognition were then
used to trigger the control of electronic devices in the home.

Another study on smart home control devices using hand
gesture recognition was also carried out [8]. With depth
camera acquisition and the application of the Hidden Markov
Model (HMM) method for gesture recognition, an average
recognition rate of 98.50% was achieved. However, the
control device was limited to only 4 types of hand gestures.

In previous studies [9], the gesture recognition system that
utilized input from the ADPS-9960 sensor was limited to
basic swipe gestures: left, right, up, and down. Instructions
were executed using upward and downward hand

 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 64

movements to navigate menus on an LCD. This research
provides a solution to the time consuming and labor-
intensive process of menu selection. By employing camera-
based gesture recognition, this approach overcomes the
limitations in the variety of gestures that can be recognized
compared to those with the ADPS-9960 sensor.

Therefore, this research introduces a smart home control
device utilizing hand gesture recognition as its trigger. The
utilization of hand gesture recognition is expected to address
various issues found in previous research. This approach is
also giving more advantage as it does not need any sensors
or attachments on our hands, offering more seamless and
convenient user experiences [10], [11]. Instead of relying on
traditional manual switches or remote controls, users can
execute simple gestures to operate lighting, temperature
settings, and other devices, allowing for quicker and more
intuitive control over home automation systems [12]. This
method reduces the need for physical contact and movement,
saving energy typically used by conventional methods and
diminishing the time taken to perform routine tasks.

II. APPLICATION DESIGN

As shown in Figure 1, the application flow begins with the
image acquisition process. In real-time image processing, the
term "image" refers to the frame unit acquired using the
camera. This image is then used as input for the hand gesture
recognition model. The output from hand gesture recognition
is subsequently employed to trigger the control of smart home
devices.

Figure 1. Application Flowchart

A. IMAGE ACQUISITION
Image acquisition is performed on the ESP32-CAM using

the OV2640 camera module. Upon activation, the ESP32-
CAM will automatically create a web server and send real-
time image data to the web server. The process of sending
image data to the web server and creating the web server itself
utilizes the built-in code or sketch from the ESP32 add-on in
the Arduino IDE called "cameraWebServer". On this web
server, the resolution and image quality can be adjusted, and

there are also features to apply effects to the image, such as
Grayscale, Binary, and others.

B. HAND GESTURE RECOGNITION
The hand gesture recognition process is executed by

inferencing each frame captured by the camera in real-time
into the Mediapipe model. Mediapipe is a versatile
framework developed by Google, provides a suite of image
processing functions that facilitate the accurate detection and
recognition of hand gestures as they occur. This real-time
processing allows the system to provide instantaneous
feedback based on the gestures it recognizes.

Before hand gestures can be recognized, the input of the
hand image is initially detected using the Palm Detection
model from Mediapipe as shown in Figure 2. This model is
created using the Single Shot Detector (SSD) architecture
and Convolutional Neural Network (CNN) method [13]. The
output of the detection is a bounding box stored in the values
of x-minimum, y-minimum, x-maximum, and y-maximum,
representing the coordinate values of the detection box on
the image.

Figure 2. Hand Gesture Recognition Flowchart

The image is then cropped based on the bounding box
values and enters the hand landmark prediction model. Hand
landmark refers to the points of joints or the framework of
the palm, as shown in Figure 3. For example,
INDEX_FINGER_MCP represents the coordinate point of
the metacarpophalangeal (MCP) joint on the index finger.
The output of the hand landmark prediction utilized for the
subsequent process includes the x and y coordinates of each
landmark on the image.

Figure 3. Hand Landmarks

The landmark coordinates in Figure 3 are utilized to
determine whether each finger is raised or lowered. For
example, if the y-coordinate of the finger's TIP in the image
is smaller or positioned above the MCP, the finger is
interpreted as raised. Each raised finger is assigned a value
of 1, while the lowered ones are assigned a value of 0. These
values of 0 and 1 represent the raised and lowered states of
the 5 fingers on both hands, as illustrated in Figure 4. By
utilizing these values for the 5 fingers, a total of 2^5
combinations or 32 types of static hand gestures can be

 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 65

formed. In this study, only 5 of the 32 hand gestures were
tested to measure the response time of the system.

Figure 4. Gesture Illustration

C. SMART HOME DEVICES CONTROLLER
In Figure 5, the ESP32-CAM is connected to the access

point created by the Raspberry Pi and sends image data to
the web server it establishes. Subsequently, the Raspberry Pi
accesses this data through the web server and uses it as input
for the gesture recognition model. The Raspberry Pi serves
as the main data processing center, handling image
processing, inferring to the gesture recognition model, and
providing output data in the form of gesture information.
Additionally, the Raspberry Pi opens an access point,
allowing other components to connect to it.

The Raspberry Pi establishes a web server so that after the
image or frame is inferred through the model, the output
results from the model are sent to the web server created by
the Raspberry Pi. The inference process and web server
operation are executed concurrently using the threading
library in the Python programming language, while the
creation of the web server utilizes the Flask library. Both
processes need to run simultaneously for the web server to
operate and update data while the Raspberry Pi processes
image data. The Gesture Output on the web server is
accessed by the ESP-01S and ESP32, serving as triggers to
control devices.

Figure 5. System Illustration

1) CONTROLLER USING RELAY
The ESP-01S is utilized to access gesture data and control

the relay based on the received gesture information. The
ESP-01S is connected to the Raspberry Pi's access point and
retrieves gesture data from the Raspberry Pi's web server. If
the gesture data corresponds to instructions to turn on or off
the light, the relay will operate accordingly by opening or
closing the electrical circuit. Figure 6 illustrates the
configuration scheme of the controller using a relay and
ESP-01S.

Figure 6. Installation Scheme of ESP01S and Relay

2) CONTROLLER USING IR TRANSMITTER
One limitation of the relay in this application is its

capability to only open and close the electrical circuit,
allowing instructions for turning on or off only. To address
this issue, an infrared (IR) transmitter is employed. Various
household electronic devices such as ACs, TVs, and
projectors use infrared remote controls to execute additional
instructions like adjusting temperature, changing channels,
and controlling volume. By replicating these functions, the
given instructions can be diverse and not limited to just on or
off. However, the use of the infrared transmitter is
constrained by its limited range, directional emission that
must be in line, and its inability to penetrate objects.

To mimic the operation of a remote control, the infrared
signals emitted by the remote based on instructions are
recorded and initially noted using the IR Receiver HS1838
module. Remote instruction signals are in hexadecimal form.
For example, the signal to turn on the AC is '81C08F70
C1AA09F6'. Each hexadecimal character represents 4 bits of
digital signal transmitted at a frequency of 38 kHz. For
instance, the character 'A' represents the value '0101,' while
'9' represents the value '1001' in the digital signal. When the
infrared is emitted from the remote, the signal received by
the receiver or AC is its inverse. For example, if the
transmitted signal value is '11001001,' the signal received by
the receiver is '10010011.' Therefore, after recording the
code signal for each instruction, the code is reversed or
converted. If the initially obtained signal code was
'81C08F70 C1AA09F6' during recording, the original signal
is '6F905583 0EF10381.' This original signal is what the
infrared transmitter will emit when intending to turn on the
AC.

 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 66

Figure 7. Installation Scheme of IR Transmitter and Receiver

The Infrared transmitter is connected to the ESP32. The

ESP32 is linked to the Raspberry Pi's access point connection
to access gesture data from the Raspberry Pi's web server.
When the gesture data meets the conditions to execute
specific instructions, the infrared transmitter will emit an
infrared signal to the target device and execute instructions
based on the hexadecimal code of the previously recorded
original signal. As illustrated in Figure 7, there is an IR
receiver connected to Arduino UNO to validate or
crosscheck the signal code emitted by the transmitter,
ensuring there are no errors in the code.

D. APPLICATION TESTING
The testing phase involves designing a prototype

simulation of the application's operation. The simulation is
created on a smaller scale compared to a typical smart home
system, with the aim of depicting the real system's
conditions. Additionally, this simulation is used to test the
solutions implemented for previously identified issues and
the smooth functioning of additional features. Two aspects
are tested in the formed simulation: response time testing and
gesture recognition accuracy testing.

Response time testing involves recording the time from
when a gesture is recognized on the Raspberry Pi until the
instructed device receives a response. The testing is
conducted 10 times for each gesture and measured in
seconds. Meanwhile, accuracy is tested using a Confusion
Matrix. A Confusion Matrix is a method for calculating
accuracy, precision, and recall values in a classification
system [14].

Figure 8. Confusion Matrix Example

There are four terms to calculate performance in the
Confusion Matrix, namely TP, FN, FP, and TN as shown in
Figure 8. TP or True Positive is the number of data predicted
as class 1, and the actual result is also class 1. FN or False
Negative is the number of data predicted as class 0, but the
actual result is class 1. FP or False Positive is the number of
data predicted as class 1, but the actual result is class 0.
Meanwhile, TN or True Negative is the number of data
predicted as class 0, and the actual result is also class 0 [15].
Equation (1) is used to measure the number of cases
predicted correctly compared to the overall cases. Equation
(2) is a measurement that indicates how accurate the
prediction is for the positive class. The precision value is
obtained from the ratio of True Positive to the total positive
cases. Equation (3) is used to measure the ratio of True
Positive to the total actual positive cases.

Accuracy = TP+TN
TP+TN+FP+FN

 (1)

Precision = TP
FP+TP

 (2)

Recall = TP
FN+TP

 (3)

III. RESULT AND DISCUSSIONS

The camera resolution for image acquisition is set to VGA
resolution, which is 640x480 pixels. The resulting frames are
obtained in the .JPEG file format with a file size ranging
from approximately 8000 to 12,000 bytes or 8-12 KB.
Raspberry Pi receives frame data from ESP32-CAM with an
average frames per second (fps) of 52.6, using 2 frame
buffers. Frame buffer refers to additional memory for storing
graphic information that has not been displayed on the
screen. The image data is then sent to the web server created
by ESP32-CAM. This data can be accessed using the IP
address of ESP32-CAM.

TABLE I
INFRARED SIGNAL RESULTS

Devices Command Signal Code Converted
Signal

Projector Power
On/Off

81C08F70
C1AA09F6

03810EF1
55836F90

Freeze/
Unfreeze

81C08F70
C1AA49B6

03810EF1
55836D92

AC Power On 96BFBCDC
CEC65E15

FD693B3D
6373A87A

Power Off 96BFBCDC
9A664E43

FD693B3D
6659C272

Table 1 illustrates the infrared signals successfully

recorded using an IR Receiver and emitted using an IR
Transmitter. Some signals from different brand AC remotes
were unable to be recorded because the hexadecimal codes
emitted for one instruction and one device varied. To address
this issue, attempts were made to record the pulse width and
retransmit it, but the results were still unsuccessful.

 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 67

Figure 9. Hand gestures and its commands

With the developed application, five recognizable hand

gestures have been formed to execute various instructions.
Among the executable instructions are turning on and off the
lights, projector, AC, and freezing/unfreezing the projector,
as illustrated in Figure 9. The number 1 represents raised
fingers from right to left on the right hand; for example, the
gesture data '01100' signifies that the index and middle
fingers are raised. The output of this gesture data is sent
through the web server within the local network, making it
accessible to both ESP-01s and ESP32. Figure 10
demonstrates an example of using the application for
gestures 11111 and 10001. The executed instructions for the
performed gestures were successful.

Figure 10. Example of Application Usage
Testing was conducted under specified camera resolution,

distance, and lighting conditions. The distance between the
camera and the hand was set at 1 meter. Meanwhile, the
lighting conditions were measured using a lux meter to
measure the light intensity. Measurements recorded in the
area where hand movements were tested showed a light
intensity of 245 lux.

Variations in lighting conditions, either darker or brighter,
can significantly affect the detail captured in the hand's
image, thereby making gestures more difficult to recognize.
The distance between the hand and the camera also plays a
crucial role for the system to detect hand gestures. Therefore,
further testing on both lighting and distance factors is
necessary to optimize the recognition system's performance.

A. ACCURACY TESTING RESULTS
As shown in Figure 11, the hand gesture recognition system

achieved a good accuracy of 88%. However, the gesture
00110 frequently experiences prediction failures and is often
misclassified as 01100, with a precision value of 0.6. This
occurrence may be attributed to instances where the hand is
far from the camera and has a relatively low resolution. In such
cases, the texture or shape of the hand may not be clearly

recognizable, leading to inaccurate landmark outputs. Some
similar gestures can be recognized accurately at short
distances to handle misclassification, but this may reduce the
user experience. Implementing higher-resolution cameras that
capture more detailed images could improve the system's
ability to recognize differences between similar gestures at
long distances.

Figure 11. Hand gestures and its commands

B. RESPONSE TIME TESTING RESULTS
The response speed performance in controlling smart home

devices is still below average. The average time required from
gesturing to the camera until the smart home device lights up
entirely is 7.88 seconds. The average response time between
using relay and infrared also does not indicate a significant
difference, with a minimal average speed difference (0.28
seconds) and a comparable difference in standard deviation
(0.07 seconds).

TABLE II
RESPONSE TIME TESTING RESULTS

Response time in seconds
No 11111

(Relay)
10001

(Relay)
00110
(IR)

00001
(IR)

01100
(IR)

1 9.62 10.08 11.03 9.56 11.43

2 10.63 9.89 9.58 13.42 10.24

3 11.28 10.8 9.74 9.09 8.4
4 10.42 9.21 10.27 7.79 7.97
5 7.98 8.09 9.62 11.04 08.87
6 5.2 5.27 7.79 6.62 5.98
7 5.78 6 6.68 5.65 4.82

8 5.95 5.31 5.83 6.47 6.71

9 6.97 5.15 5.87 5.4 6.09

10 5.83 5.35 5.17 6.42 7.18

Mean 7.74 8.02

7.88

Standard
Deviation

2.27 2.2

2.24

The generated deviation indicates that the speed
performance of the smart home controller is still fluctuating.
As observed in Table 2, numbers 1 to 5 and 6 to 10, the

Prediction

A
ct

ua
l

Accuracy

 Stanley A. Dewangga, et. al.: Implementation of Hand Gesture… (October 2024)

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.372 68

resulting response times show a significant difference with
an average gap of 3.86. When the program is running, the
number of frames per second captured by the Raspberry Pi
drastically decreases from the initial 52.6 fps to around 1 to
3 fps. This is because each frame captured by the camera is
processed and inferred into the model before capturing the
next frame. Therefore, the computational speed of the
Raspberry Pi in processing and inferring images into the
model remains inconsistent and inefficient.

IV. CONCLUSION

The smart home device control system developed has an
average overall response time of 7.88 seconds from 10 tests
for each gesture. This response time is still too long if applied
in product form. The prolonged response time is due to the
computational limitations of the Raspberry Pi 3 Model B in
handling images and inferring them into the gesture
recognition model. Therefore, this research still cannot solve
the issues of time and energy efficiency identified in the
previous study. However, this research has the potential to
be improved and can address these issues by changing the
central computing unit to another small computer with
higher computational speed.

The hand gesture recognition system achieved an overall
accuracy of 88%, which is satisfactory. However, some
gesture recognition errors still occur, and certain gestures
remain challenging to use. The system can recognize up to
32 gestures, but this study only utilized 5, indicating that the
limitations in the number of recognized gestures in the
previous research can be addressed with some improvements
in this study.

Based on the experiments and tests conducted, there are
several suggestions that can be applied to enhance and
further develop this research, including:
1. Replacing the Raspberry Pi 3 Model B as the main

computing unit with a faster computer for image
processing. This decision should also consider the
amount of input to be processed on that computing
resource, as multiple inputs may be required for more
than one room.

2. Considering the option of not running gesture
recognition in real-time but providing an interface
feature for gesture recording mode, making the power
consumption more efficient.

3. Implementing a feature to record and store infrared
signals from the original remote and being able to emit
them when specific instructions are called.

AUTHORS CONTRIBUTION
Stanley Adi Dewangga: Writing original draft,
conceptualization, methodology, editing writing, software,
validation, and data curation.
Mochamad Subianto: Supervision, analysis, investigation,
resources, system validation;
Windra Swastika: Supervision, methodology,
conceptualization, system validation, investigation;

COPYRIGHT
This work is licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

REFERENCES
[1] P. Mtshali and F. Khubisa, “A Smart Home Appliance Control System

for Physically Disabled People,” in 2019 Conference on Information
Communications Technology and Society (ICTAS), IEEE, Mar. 2019,
pp. 1–5. doi: 10.1109/ICTAS.2019.8703637.

[2] A. Mujahid et al., “Real-Time Hand Gesture Recognition Based on
Deep Learning YOLOv3 Model,” Applied Sciences, vol. 11, no. 9, p.
4164, May 2021, doi: 10.3390/app11094164.

[3] V. Këpuska and G. Bohouta, “Next-generation of virtual personal
assistants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google
Home),” in 2018 IEEE 8th Annual Computing and Communication
Workshop and Conference (CCWC), 2018, pp. 99–103. doi:
10.1109/CCWC.2018.8301638.

[4] S. P. Yadav, A. Gupta, C. Dos Santos Nascimento, V. de Albuquerque,
M. S. Naruka, and S. Singh Chauhan, “Voice-Based Virtual-
Controlled Intelligent Personal Assistants,” in 2023 International
Conference on Computational Intelligence, Communication
Technology and Networking (CICTN), 2023, pp. 563–568. doi:
10.1109/CICTN57981.2023.10141447.

[5] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li,
“Spoofing and countermeasures for speaker verification: A survey,”
Speech Commun, vol. 66, pp. 130–153, 2015, doi:
https://doi.org/10.1016/j.specom.2014.10.005.

[6] N. R. Adhinugroho and H. P. Uranus, Perancangan Rumah Cerdas
sebagai Aplikasi IoT Berbasis Voice Recognition dan Arduino [Voice
Recognition and Arduino Based Smart Home Design as Application of
IoT]. 2019.

[7] H. Basanta, Y.-P. Huang, and T.-T. Lee, “Assistive design for elderly
living ambient using voice and gesture recognition system,” in 2017
IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE, Oct. 2017, pp. 840–845. doi:
10.1109/SMC.2017.8122714.

[8] T.-S. Dinh Dong-Luong and Kim, “Smart Home Appliance Control
via Hand Gesture Recognition Using a Depth Camera,” in Smart
Energy Control Systems for Sustainable Buildings, C. and H. R. J. and
J. L. C. Littlewood John and Spataru, Ed., Cham: Springer
International Publishing, 2017, pp. 159–172.

[9] R.-J. Wang, S.-C. Lai, J.-Y. Jhuang, M.-C. Ho, and Y.-C. Shiau,
“Development of Smart Home Gesture-based Control System,”
Sensors and Materials, vol. 33, no. 10, p. 3459, Oct. 2021, doi:
10.18494/SAM.2021.3522.

[10] J. Dai, “Gesture Recognition Based Smart Home Control System,”
2020.

[11] P. Vogiatzidakis and P. Koutsabasis, “Mid-Air Gesture Control of
Multiple Home Devices in Spatial Augmented Reality Prototype,”
Multimodal Technologies and Interaction, vol. 4, p. 61, Aug. 2020,
doi: 10.3390/mti4030061.

[12] A. S. Bankar, A. D. Harale, and K. J. Karande, “Gestures Controlled
Home Automation using Deep Learning: A Review,” International
Journal of Current Engineering and Technology, vol. 11, no. 06, pp.
617–621, Dec. 2021, doi: 10.14741/ijcet/v.11.6.4.

[13] F. Zhang et al., “MediaPipe Hands: On-device Real-time Hand
Tracking,” CoRR, vol. abs/2006.1, 2020, [Online]. Available:
https://arxiv.org/abs/2006.10214

[14] B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “Pengukuran Kinerja
Sistem Kualitas Udara dengan Teknologi WSN menggunakan
Confusion Matrix,” Jurnal Informatika Upgris, vol. 6, no. 2, Jan.
2021, doi: 10.26877/jiu.v6i2.6552.

[15] R. B. Widodo, “Confusion matrix,” in Metode k-Nearest Neighbors
Klasifikasi Angka Bahasa Isyarat, Malang: Media Nusa Creative,
2022, ch. 3, pp. 21–23.

https://creativecommons.org/licenses/by-nc-sa/4.0/

	1) CONTROLLER USING RELAY
	2) CONTROLLER USING IR TRANSMITTER

