
 Teja E. E. Tju, et. al.: Hand Sign Virtual Reality Data… (October 2024) 

VOLUME 06, No 02, 2024 DOI: 10.52985/insyst.v6i2.395 54 

Hand Sign Virtual Reality Data 
Processing Using Padding Technique  
 
Teja E. E. Tju1, Julaiha P. Anggraini1, and Muhammad U. Shalih1 
1Faculty of Information Technology, Universitas Budi Luhur, Jakarta Selatan, Indonesia 
 

Corresponding author: Teja E. E. Tju (e-mail: teja.endraengtju@budiluhur.ac.id). 

 

ABSTRACT This study focuses on addressing the challenges of processing hand sign data in Virtual Reality 
environments, particularly the variability in data length during gesture recording. To optimize machine 
learning models for gesture recognition, various padding techniques were implemented. The data was 
gathered using the Meta Quest 2 device, consisting of 1,000 samples representing 10 American Sign 
Language hand sign movements. The research applied different padding techniques, including pre- and post-
zero padding as well as replication padding, to standardize sequence lengths. Long Short-Term Memory 
networks were utilized for modeling, with the data split into 80% for training and 20% for validation. An 
additional 100 unseen samples were used for testing. Among the techniques, pre-replication padding 
produced the best results in terms of accuracy, precision, recall, and F1 score on the test dataset. Both pre- 
and post-zero padding also demonstrated strong performance but were outperformed by replication padding. 
This study highlights the importance of padding techniques in optimizing the accuracy and generalizability 
of machine learning models for hand sign recognition in Virtual Reality. The findings offer valuable insights 
for developing more robust and efficient gesture recognition systems in interactive Virtual Reality 
environments, enhancing user experiences and system reliability. Future work could explore extending these 
techniques to other Virtual Reality interactions. 
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I. INTRODUCTION 
The development of Virtual Reality (VR) technology has 

opened new opportunities in various fields [1], [2], including 
education [3], [4], [5], rehabilitation [6], [7], [8], and the 
development of applications for individuals with special needs 
[9], [10]. One promising application is hand sign interpretation 
for communication with individuals who have speech 
disabilities [11], [12], [13]. However, hand-sign data 
processing in a VR environment faces several challenges. 
Specifically, the processing of hand sign data from VR devices 
encounters difficulties, particularly concerning the variation in 
data length generated during the recording process. Therefore, 
in-depth research is needed to optimize the padding data 
processing method to enhance hand sign interpretation 
accuracy and efficiency. 

Previous research has attempted to use VR technology to 
assist individuals with speech disabilities through hand sign 
interpretation. Some studies have used image datasets with 
American Sign Language (ASL) [13], [14], [15] and 
Malaysian Sign Language (MSL) [11]. Other research has 
utilized triboelectric gloves that produce voltage graph 
datasets [16]. Padding techniques are generally applied in 
studies with sequential or graphical datasets, such as sign 

language recognition [17], speech emotion recognition [18], 
and padding modules [19] with neural network modeling, as 
well as traffic flow prediction using Long Short-Term 
Memory (LSTM) models [20]. 

The novelty of this research lies in its application of padding 
techniques to VR hand sign data, specifically addressing the 
variation in data length generated during the data collection 
process using sequential primary data recorded directly from 
VR devices. While our previous similar studies [21] have 
focused solely on post-zero padding with 28 parameters, 
requiring more complex RNN models, this research employs 
22 parameters, allowing for a simpler model architecture 
without sacrificing effectiveness. This approach highlights the 
trade-off between model complexity and parameter count, 
demonstrating that a streamlined model can still achieve 
efficient performance. The innovative use of padding 
techniques in the context of VR hand sign data, which is 
relatively new, offers a targeted solution for enhancing VR 
applications and supporting individuals with speech 
disabilities. 
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II. METHODS 
The research process is divided into four main stages, as 

illustrated in Figure 1, Data Collection, Implementing Padding 
Technique, Machine Learning Modeling, and Evaluation and 
Testing. These stages ensure a comprehensive approach to 
addressing the challenges of hand sign interpretation in a VR 
environment. 

 

Figure 1. Overview of research stages.  

A. DATA COLLECTION 
Primary data collection was conducted using the VR device 

Meta Quest 2 [22], as shown in Figure 2. Ten types of hand 
sign movements were collected based on ASL [23], [24], [25], 
[26] and selected for their ease of use and compatibility with 
VR devices. These signs, illustrated in Figure 3, were chosen 
because they are common and straightforward, ensuring the 
VR system can accurately capture them. Each sign was 
recorded with 100 samples, providing sufficient data for 
analysis. 

Figure 2. Meta Quest 2:  Immersive, all-in-one VR device [27]. 
 

Figure 3. 10 Hand sign movements. 

Data collection was performed using an application 
developed with Unity Editor [28], [29], as shown in Figure 4. 
Each data recorded consists of 11 parameters each from the 
left and right hand, including trigger touch, trigger pressed, 
grip pressed, thumb touch, position (X, Y, Z), and quaternion 
(W, X, Y, Z). 

 

 
Figure 4. VR data recording application. 

B. IMPLEMENTING PADDING TECHNIQUES 
Several padding methods were studied to understand how 

to implement them in the context of VR hand gesture data. 
Commonly used padding techniques, such as zero and 
replication, are applied to balance the data length. Specifically, 
variations like pre-zero, post-zero, pre- and post-zero, pre-
replication, post-replication, and pre- and post-replication 
padding are explored. Figure 5 illustrates the explanation of 
these padding techniques. 
 

Figure 5. Comparison of padding techniques. 
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The selected padding methods were applied to the collected 

data and compared to identify the most effective approach for 
managing data length variation. This process ensured 
consistency and integrity in the machine learning workflow. 
The goal of evaluating different padding techniques was to 
improve the accuracy and efficiency of machine-learning 
models for interpreting VR hand gestures. 

C. MACHINE LEARNING MODELING 
After the data has been processed using padding techniques, 

machine learning models are developed and trained. The data 
is divided into training data (80%) and validation data (20%). 
Recurrent Neural Networks (RNNs) with Long Short-Term 
Memory (LSTM) cells are utilized for modeling. LSTMs are 
a specific type of RNN that effectively handles sequential data 
and captures long-range dependencies while mitigating the 
vanishing gradient problem common in traditional RNNs [30], 
[31]. 

The model is trained on the training dataset and its 
performance is evaluated using the validation dataset. Further 
testing is conducted with new, unseen data to assess the 
model’s effectiveness in real-world scenarios. 

D. EVALUATION AND TESTING 
Thoroughly evaluating the performance of the trained 

model, several evaluation metrics were employed, including 
accuracy, precision, recall, F1 score, and confusion matrix 
analysis [32]. These metrics provided a comprehensive view 
of the model’s performance, identifying areas where it 
excelled and where further improvements were needed. 

To further validate the robustness of the model, an 
additional 100 new data samples were collected. These 
samples, which the model had not previously encountered, 
were used to test its performance on unseen data. This step was 
crucial in determining the model’s real-world applicability and 
ensuring that it could generalize effectively beyond the initial 
dataset. 

The evaluation process, therefore, not only confirmed the 
model's effectiveness but also guided subsequent refinement 
and optimization efforts, ensuring a reliable and efficient 
solution for interpreting VR hand gestures. 

 
III. RESULT AND DISCUSSION 

The data collection phase successfully yielded 1,000 
samples, evenly distributed across 10 selected ASL hand signs 
(https://github.com/umaruta4/SignLanguage_MTC_Data/tree
/main/new_american_sign_language). Each sign contributed 
an equal number of samples, ensuring a balanced dataset for 
further analysis. Figure 6 presents an example from the 
collected data, highlighting the 11 parameters that define each 
hand sign. 

The overall graphs shown in Figure 6 illustrate the 
recordings of a specific hand sign movement, the horizontal 
axis of these graphs denotes the n-th Unity sampling, while the 
vertical axis values correspond to various sensor readings [28]. 
The data is organized into graphs labeled from Sensor 0 to 
Sensor 21, with a detailed explanation of the 11 parameters 
provided in Table 1. 

The application of various padding strategies played a 
significant role in addressing the challenge of varying data 
lengths in VR hand gesture datasets. The variations of zero and 
replication padding techniques were systematically applied to 
the dataset. The results of these padding implementations, as 
depicted in Figure 7, show how the raw data in Figure 6 was 
transformed into a consistent format across all samples. This 
uniformity was essential in preserving the data's structural 
integrity and ensuring that the machine learning algorithms 
could process the data without being influenced by 
inconsistencies in sequence length. 

 
TABLE I 

SENSOR DATA PARAMETERS 

Left Hand Right Hand Parameter Vertical Axis Value 
Sensor 0 Sensor 11 Trigger Touch Boolean: 0 or 1 
Sensor 1 Sensor 12 Trigger Pressed Boolean: 0 or 1 
Sensor 2 Sensor 13 Grip Pressed Boolean: 0 or 1 
Sensor 3 Sensor 14 Thumb Touch Boolean: 0 or 1 
Sensor 4 Sensor 15 Position X Meter (m) 
Sensor 5 Sensor 16 Position Y Meter (m) 
Sensor 6 Sensor 17 Position Z Meter (m) 
Sensor 7 Sensor 18 Quaternion W Scalar 
Sensor 8 Sensor 19 Quaternion X Vector 
Sensor 9 Sensor 20 Quaternion Y Vector 
Sensor 10 Sensor 21 Quaternion Z Vector 

 
 

 

Figure 6. Example of ASL “Good” data with 22 parameters. 
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Figure 7. Examples of VR hand gesture data after applying various padding techniques. 
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The LSTM-based neural network model, shown in Figure 
8, was designed to process the sequential hand gesture data 
captured in the VR environment. After applying padding 
techniques, the sequence length was standardized to match the 
maximum Unity sampling length, which in this case was set 
to 113 time steps. Each time step in the sequence contains 22 
feature dimensions, corresponding to the 22 parameters 
recorded from both hands during gesture performance. 

 

 

Figure 8. LSTM-based Neural Network model for VR dataset. 
 
The model architecture begins with a masking layer that 

handles padded values by ignoring them while learning, 
ensuring that the model only processes relevant data. This 
layer maintains the input shape of (None, 113, 22), where 113 
represents the standardized sequence length and 22 denotes 
the feature dimensions. The None indicates a variable batch 
size. The model's core is the LSTM layer, specifically 
designed to capture the temporal dependencies in the 
sequential gesture data. The input shape for this layer remains 
(None, 113, 22), and an additional input (None, 113) 
represents the mask applied to the sequence. It outputs a 

reduced representation with 64 features, highlighting the most 
significant aspects of the data across the 113 time steps. 
Finally, the dense layer aggregates the information extracted 
by the LSTM layer, outputting a 10-dimensional vector, where 
each dimension corresponds to the 10 different hand sign 
movements during training. This structure ensures the model 
can effectively classify the input sequences into the correct 
hand gesture categories. 

The LSTM-based model was trained on 800 VR hand 
gesture samples, with 200 samples reserved for validation. 
Figures 9 and 10 show the model’s performance using 
different padding techniques. 

For the zero padding technique (Figure 9), the model 
demonstrated alignment between training and validation 
accuracy, indicating effective learning with minimal 
overfitting. The final accuracy confirmed the model's 
capability to interpret zero-padded data consistently. Pre-zero 
padding achieved 0.58 validation accuracy, indicating 
baseline effectiveness but challenges in maintaining data 
integrity. Post-zero padding yielded 0.55 accuracy, with 
minimal impact from the padding position but some 
inconsistency in data representation. Pre- and post-zero 
padding was the top-performing zero padding method, with 
0.99 accuracy, providing balanced data representation. 

Replication padding (Figure 10) also produced promising 
results, with accuracy and loss curves reflecting consistent 
learning. This method allowed the model to generalize well 
from the training data, highlighting the importance of selecting 
appropriate padding techniques. Pre-replication padding 
excelled with 0.97 accuracy, effectively preserving sequence 
structure for better model learning. Post-replication padding 
reached 0.73 accuracy, performing better than zero padding 
but less effectively than Pre-replication Padding. Pre- and 
post-replication padding showed strong results with 0.88 
accuracy, demonstrating robustness in maintaining temporal 
structure. 

 

 

 

Figure 9. Training and validation accuracy and loss with zero padding.  
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Figure 10. Training and validation accuracy and loss with replication padding. 
 

The trained LSTM-based model was comprehensively 
evaluated using metrics like accuracy, precision, recall, F1 
score, and confusion matrix analysis. These metrics provided 
an overall assessment of the model's performance, helping to 
identify its general effectiveness in interpreting VR hand 
gestures. 

Figure 11 shows the confusion matrix for the validation 
dataset, illustrating how well the model predicted each hand 
sign after training. The matrix indicates strong performance in 
some categories but also reveals specific hand signs where the 
model’s predictions were less accurate, suggesting potential 
areas for further refinement. 

An additional 100 unseen data samples were tested to assess 
the model's robustness. Figure 12 presents the confusion 
matrix for this test dataset, reflecting the model's ability to 
generalize to new data. These matrices help to understand the 
model's performance across various categories. 

Table 2 summarizes key performance metrics, including 
accuracy, precision, recall, and F1 score, for both the 
validation and test datasets. The table also includes an overall 
ranking of the padding techniques based on these metrics, 
offering insights into which methods were most effective in 
ensuring accurate and consistent model performance. 

 

 
 

 

Figure 11. Confusion Matrix for validation dataset. 
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Figure 12. Confusion Matrix for test dataset (100 new data). 
 

TABLE II 
AGGREGATE PERFORMANCE METRICS AND RANKING OF PADDING TECHNIQUES 

Padding Technique Accuracy Precision Recall F1 score Overall Rank 
Val. Test Val. Test Val. Test Val. Test Val. Test 

Pre-Replication Padding 0.97 0.99 0.98 0.99 0.97 0.99 0.98 0.99 2 1 
Pre- and Post-Zero Padding 0.99 0.98 1.00 0.98 0.99 0.98 0.99 0.98 1 2 
Pre- and Post-Replication Padding 0.88 0.87 0.88 0.90 0.88 0.87 0.87 0.86 3 3 
Post-Replication Padding 0.73 0.67 0.79 0.65 0.73 0.67 0.69 0.61 4 4 
Pre-Zero Padding 0.58 0.53 0.53 0.50 0.58 0.53 0.55 0.51 6 5 
Post-Zero Padding 0.55 0.50 0.66 0.57 0.55 0.50 0.53 0.49 5 6 

 
The analysis of different padding techniques reveals notable 

variations in performance metrics, including Accuracy, 
Precision, Recall, and F1 Score, for both validation and test 
datasets. These metrics provide a comprehensive view of how 
each padding technique impacts model performance. 

Pre-replication padding shows strong performance across 
all metrics, achieving high scores in both validation and test 
datasets. It ranks second in validation and first in the test 
dataset, indicating its robust ability to generalize and maintain 
a well-balanced model. The consistently high accuracy, 
precision, recall, and F1 score suggest that this padding 
technique minimizes misclassifications effectively and 
performs reliably across different data splits. 

In comparison, pre- and post-zero padding achieves 
perfect precision and high recall in the validation dataset, 
reflecting its strong performance in identifying positive cases 
within this controlled environment. However, the technique’s 
performance slightly drops in the test dataset. This decline 
may be due to the inherent differences between the validation 
and test data distributions, which can impact how well the 
model generalizes to new data. Despite this drop, it remains 

highly effective and ranks first in validation and second in the 
test dataset. 

Pre- and post-replication padding ranks third in both 
datasets, showing stable but not exceptional performance. 
Although it provides balanced metrics, its scores are lower 
compared to the top two techniques. This suggests that while 
it performs reliably, it does not reach the high levels of 
accuracy and balance achieved by pre-replication and pre- 
and post-zero padding. 

Post-replication padding ranks fourth, with lower 
accuracy and F1 score compared to the higher-ranked 
techniques. This indicates a higher rate of misclassifications 
and less effective performance overall. The lower metrics 
suggest that this technique is less capable of managing 
classification tasks with the same efficiency as the top 
methods. 

Pre-zero and post-zero padding exhibit the lowest 
performance, ranking fifth and sixth, respectively. These 
techniques show poorer accuracy, precision, and recall, 
leading to higher misclassification rates. Their lower metrics 
reflect their limited effectiveness in correctly identifying 
positive cases and achieving balanced classification results. 
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Choosing the appropriate padding technique is crucial for 
optimizing model accuracy and generalization. The top 
methods, pre-replication and pre- and post-zero padding 
offer robust performance and balanced metrics, making them 
suitable for effective model deployment. Conversely, the 
lower-ranked techniques highlight areas where model 
performance could be improved, suggesting their lesser 
suitability for achieving optimal results. 

 
IV. CONCLUSION 

This research highlights the significant influence of padding 
techniques on the performance of RNN models in interpreting 
VR hand gesture data. Our findings reveal that selecting an 
appropriate padding method can lead to substantial 
improvements in model accuracy, precision, recall, and F1 
score, even when utilizing simpler RNN architectures. 
Specifically, techniques like pre-replication padding and pre- 
and post-zero padding demonstrate superior effectiveness. 
Pre-replication padding consistently delivers high 
performance across all evaluation metrics, maintaining robust 
accuracy and generalization on both validation and test 
datasets. Meanwhile, pre- and post-zero padding shows 
excellent results in the validation phase but exhibits a slight 
reduction in performance during testing, indicating a potential 
sensitivity to unseen data. 

These results highlight the critical role of selecting 
appropriate padding techniques to optimize model 
performance in sequence-based data processing. They 
demonstrate that even with simpler RNN models, the use of 
strategic padding can substantially enhance learning 
efficiency and improve the model's ability to generalize from 
training data to real-world applications. This emphasizes the 
need for thoughtful preprocessing choices in the design of 
sequence models to achieve robust and effective outcomes. 

Looking ahead, future research could explore advanced 
padding strategies to optimize model performance. 
Investigating the interaction between innovative padding 
methods and different RNN architectures could unlock 
opportunities for greater accuracy and efficiency, leading to 
more effective classification systems in VR and other 
applications. These padding techniques enhance machine 
learning models' performance and flexibility in complex VR 
and real-life scenarios by standardizing data input, improving 
robustness, optimizing computational efficiency, and enabling 
cross-domain applications. They can significantly improve 
applications like sign language to speech conversion by 
ensuring consistent and accurate data processing, enabling 
real-time translation of hand gestures captured in VR into 
speech. This is crucial for developing assistive technologies 
that empower individuals with speech impairments. As VR 
technology evolves, these padding strategies will be essential 
for creating more sophisticated, responsive, and adaptable 
systems for real-world interactions. Continued refinement and 
innovation in these techniques will drive the next generation 
of immersive and accessible technologies. 
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