Klasifikasi Micro-Expression Menggunakan K-Nearest Neighbors Menggunakan Fitur CAS dan HOG
DOI:
https://doi.org/10.52985/insyst.v5i2.346Keywords:
CAS, HOG, K-NN, Micro-ExpressionAbstract
Micro-Expression adalah ekspresi yang muncul dalam waktu singkat, hanya berlangsung sepersekian detik. Hal ini mungkin merupakan akibat dari aktivitas komunikasi antar manusia selama interaksi sosial. Reaksi ekspresi mikro wajah terjadi secara alami dan segera, sehingga hanya menyisakan sedikit ruang untuk manipulasi. Namun, karena Micro-Expression bersifat sementara dan memiliki intensitas rendah, pengenalan dan pengenalannya sulit dan sangat bergantung pada pengalaman para ahli. Karena kekhususan dan kompleksitas intrinsiknya, klasifikasi Micro-Expression menggunakan 2 ekstraksi yaitu CAS dan HOG menarik tetapi menantang, dan baru-baru ini menjadi area penelitian yang aktif. context-aware saliency (CAS) yang bertujuan untuk mendeteksi wilayah gambar yang mewakili pemandangan. Tutujuannya adalah untuk mendeteksi objek dominan. Histogram Oriented Gradient (HOG) Bertujuan sebagai deskriptor yang efektif untuk pengenalan dan deteksi objek. Metode K-Nearest Neighbors (K-NN) digunakan untuk klasifikasi Micro-Expression berdasarkan fitur HOG dari citra saliency. Dataset yang digunakan pada penelitian ini dari data sampel siswa SMK Ma’arif NU Prambon jurusan Multimedia sebanyak 45 siswa dan ditambahkan dataset dari affecnet. Hasil yang didapatkan dari total dataset sebanyak 4116 citra yang dibagi menjadi 6 Micro-Expression yaitu anger, disgust, fear, happy, sad dan surprise, mendapatkan hasil akurasi diatas 80% dari perbandingan dataset sejumlah 4116 terbagi menjadi 2 dengan persentase 70% training dan 30% data testing.
References
X. Ben et al., “Video-based facial micro-expression analysis: A survey of datasets, features and algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 5826–5846, 2021.
L. Lei, T. Chen, S. Li, and J. Li, “Micro-expression recognition based on facial graph representation learning and facial action unit fusion,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 1571–1580.
Y. Liu, H. Du, L. Zheng, and T. Gedeon, “A neural micro-expression recognizer,” in 2019 14th IEEE international conference on automatic face & gesture recognition (FG 2019), 2019, pp. 1–4.
N. Van Quang, J. Chun, and T. Tokuyama, “CapsuleNet for micro-expression recognition,” in 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), 2019, pp. 1–7.
N. Amynarto, Y. A. Sari, and R. C. Wihandika, “Pengenalan emosi berdasarkan ekspresi mikro menggunakan metode local binary pattern,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3230–3238, 2018.
D. Goleman, R. Boyatzis, and A. McKee, “The emotional reality of teams,” J. Organ. Excell., vol. 21, no. 2, pp. 55–65, 2002.
P. Ekman, “What scientists who study emotion agree about,” Perspect. Psychol. Sci., vol. 11, no. 1, pp. 31–34, 2016.
W.-J. Yan, Q. Wu, Y.-J. Liu, S.-J. Wang, and X. Fu, “CASME database: A dataset of spontaneous micro-expressions collected from neutralized faces,” in 2013 10th IEEE international conference and workshops on automatic face and gesture recognition (FG), 2013, pp. 1–7.
S.-T. Liong, Y. S. Gan, J. See, H.-Q. Khor, and Y.-C. Huang, “Shallow triple stream three-dimensional cnn (ststnet) for micro-expression recognition,” in 2019 14th IEEE international conference on automatic face & gesture recognition (FG 2019), 2019, pp. 1–5.
N. K. A. Wirdiani, P. Hridayami, N. P. A. Widiari, K. D. Rismawan, P. B. Candradinata, and I. P. D. Jayantha, “Face identification based on K-nearest neighbor,” Sci. J. Informatics, vol. 6, no. 2, pp. 150–159, 2019.
S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 10, pp. 1915–1926, 2011.
W. Kim and C. Kim, “A novel image importance model for content-aware image resizing,” in 2011 18th IEEE International Conference on Image Processing, 2011, pp. 2469–2472.
M. Ahmadi, N. Karimi, and S. Samavi, “Context-aware saliency detection for image retargeting using convolutional neural networks,” Multimed. Tools Appl., vol. 80, pp. 11917–11941, 2021.
L. R. Cerna, G. Camara-Chavez, and D. Menotti, “Face detection: Histogram of oriented gradients and bag of feature method,” in Proceedings of the International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), 2013, p. 1.
O. Déniz, G. Bueno, J. Salido, and F. la Torre, “Face recognition using histograms of oriented gradients,” Pattern Recognit. Lett., vol. 32, no. 12, pp. 1598–1603, 2011.
M. A. Hameed, M. Hassaballah, S. Aly, and A. I. Awad, “An adaptive image steganography method based on histogram of oriented gradient and PVD-LSB techniques,” IEEE Access, vol. 7, pp. 185189–185204, 2019.
R. G. Guendel, F. Fioranelli, and A. Yarovoy, “Phase-based classification for arm gesture and gross-motor activities using histogram of oriented gradients,” IEEE Sens. J., vol. 21, no. 6, pp. 7918–7927, 2020.
M. M. Fouad, H. M. Zawbaa, T. Gaber, V. Snasel, and A. E. Hassanien, “A fish detection approach based on BAT algorithm,” in The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt, 2016, pp. 273–283.
M. Murugappan et al., “Facial expression classification using KNN and decision tree classifiers,” in 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), 2020, pp. 1–6.
R. Mohamed, M. M. Yusof, N. Wahid, N. Murli, and M. Othman, “Bat algorithm and k-means techniques for classification performance improvement,” Indones J Electr Eng Comput Sci, vol. 15, no. 3, pp. 1411–1418, 2019.
L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1129–1135, 2020.
K. A. Sugiarta, I. Cholissodin, and E. Santoso, “Optimasi K-Nearest Neighbor Menggunakan Bat Algorithm Untuk Klasifikasi Penyakit Ginjal Kronis,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 10, pp. 10301–10308, 2019.
K. W. Mahardika, Y. A. Sari, and A. Arwan, “Optimasi K-Nearest Neighbour Menggunakan Particle Swarm Optimization pada Sistem Pakar untuk Monitoring Pengendalian Hama pada Tanaman Jeruk,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 9, pp. 3333–3344, 2018.
W. Nugroho, “Optimasi Metode K-Nearest Neighbours dengan Backward Elimination Menggunakan Dataset Software Effort Estimation,” Bianglala Inform., vol. 8, no. 2, pp. 129–133, 2020.
F. Fandiansyah, J. Y. Sari, and I. P. Ningrum, “Pengenalan Wajah Menggunakan Metode Linear Discriminant Analysis dan k Nearest Neighbor,” Ultim. J. Tek. Inform., vol. 9, no. 1, pp. 1–9, 2017.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 INSYST: Journal of Intelligent System and Computation
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.